(4) 网格模板法(RSD法) Shephard、Perucchio、Saxena、Sapidis和Yerry等是这种方法成功运用的主要代表。网格模板法生成有限元网格主要分两步(以介绍三维实体为主):其一、 将待分实体用适当大小的立方体箱(树根)完全包容,按“一化八”原则递归离散,然后对每个八分块按如下方法进行分类: Procedure ModClassCell(Cell,S)=('IN','OUT','NIO') If (八分块中至少有一个顶点为'OUT'且至少有一个顶点为'IN') then 'NIO' Else if (Cell (*S=() then 'OUT' Else if (Cell (*S=Cell) the 'IN' Else 'NIO' End; {procedure} 对于IN的八分块继续递归离散直到预定水平级为止,OUT的八分块不再划分,NIO的八分块进一步子划分,且分类直到预定水平级为止。称终了IN和NIO八分块的并集为RSD模型。其二,对已经形成的RSD模型,目前已有多种生成网格的处理方法。主要有三种:RSD/GDT法、RSD/EE法和RSD/DDT法。它们主要有以下特点:
① RSD/EE法不能处理曲面实体、非流形体和不连通实体。与此相反,RSD/DDT法却能处理有孔的任意曲面实体、非流形体和不连通实体,而且所形成四面体形状质量良好。
② RSD/DDT法根据需要以满足条件为准则插入新点,因此所插入的新点数量少,而RSD/GDT法则会插入许多冗余点。
③ RSD/GDT法使用点/实体分类,使时间复杂性至少大一个数量级,而RSD/DDT法不使用点/实体分类,因此,RSD/DDT法平均时间复杂性为O(N2),N为实体S的总表面数。RSD/EE法具有不确定的时间复杂性。